EVAPORATOR DESIGN

BY J.P.SRIVASTAVA Chief Design Engineer National Sugar Institute, Kanpur, India

OBJECTIVE

To concentrate juice up to desired Bx. with minimum energy consumption

FUNCTION

1. To evaporate water present in clear juice in various bodies of MEE system

2. To bleed vapour to juice heaters , pans for heating of juice & boiling of massecuite

Evaporator Configuration

- 1. Quadruple effect
- 2. Double effect + Quad
- 3. Quintuple effect

Various designs of evaporator

1. Semi- Kestner - Rising film

- a. Tube size ID 42 mm , Od 45 mm Total length – 4 to 5 meter 2. Falling Film
 - a. Tube size ID 35 mm Total length - 10 meter
- 3. Robert evaporator- Conventional design

a. Tube size - ID- 42 mm, OD -45 mm Total length - 2.0 meter

EVAPORATOR SYSTEM

Mass balance on a single effect

- $\mathbf{M}_{\mathbf{F}} = \mathbf{M}\mathbf{p} + \mathbf{M}\mathbf{v}$
- Ms = Mc

Energy Balance $M_Fh_F + M_{shs} = M_{php} + M_{vhv} + M_{chc}$

where M = Mass flow rate of respective streams h = Enthalpy of respective streams

Multiple effect evaporators

MEE with Recompression

Thermal Vapour Recompression (TVR)

Mechanical Vapour recompression (MVR)

Evaporator design(Robert type)

DESIGN PARAMETERS

- Heating surface
- Total number of tubes
- Tube plate diameter
- Down take diameter
- Size of steam inlet
- Size of condensate outlet
- Size of vents
- Catchall design

Heating surface of evaporator

- Depends
- 1. Crushing rate of the factory (TCH)
- 2. Clear juice % cane
- 3. Vapour bleeding from various bodies
- 4. Standard evaporation rates

Vapour pressure in various bodies

Effect Quadruple Quintuple exhaust $1.75 \text{kg/cm}^2 \text{abs}$ $1.75 \text{kg/cm}^2 \text{abs}$ 1.32 1.40 0.91 2 1.07 3 0.53 0.75 0.45 0.17 4 5 0.17

Evaporation Rates

Effect
 I (SK)
 I (VC)
 2
 35-32
 30-25
 4
 25-20
 20-15

Design Parameters

Total No of tubes (N) N = HS of evaporator

 π x Dm x Leff

Where Dm = (ID + OD)/2 Leff = 2000mm - 2 x 25mm - 2 x 2.5mm

Calculate N

- Diameter of Down take (Dd)
- Circulation Ratio (CR)
 CR = CS area of all tubes/CS area of down take

$$= \pi/4 \operatorname{di}^{2} \times \operatorname{N}_{\pi/4} \operatorname{Dd}^{2}$$
Effect 1 2 3 4
5
CR 0.0 13 7.5 6.5
5.5

Diameter of tube plate(Dtp)

<u>Setting of tubes:</u> Two types of setting 1. Triangular setting 2. Square setting 60° 60° 60° 7° 7°

TRIANGULAR SETTING

SQUARE SETTING

L (Ligament) = 12 mm Area(Triangular) = 0.866 P² (Square) = P² Area of tube plate = $0.866P^2 \times N$ 0.85 $\pi/4 Dtp^2 = 0.866P^2 \times N$ 0.85

Calculate Dtp

EVAPORATION RATE

S.No	VESSEL	ER (Kg /hr./m²heating surface)
1	1 ST EFFECT (VESSEL) SK	45 - 50
2	2 ND EFFECT (VESSEL) VC	40 - 42
3	3 RD EFFECT (VESSEL)	32 – 35
4	4 TH EFFECT (VESSEL)	25 - 30
5	5 TH EFFECT (VESSEL)	15 – 15

TUBE PLATE

Calculate D from above equation

Thickness of calendria shell

$$t_{cs} = \frac{P_{sx} D_i}{2fj - P_s} + c$$

Where Ps = Design pressure

- =1.2x working pressure(3.5kg/cm²)
- Di = Internal dia. Of calendria shell
- f = Safe allowable stress(950kg/cm²)
- j = Weld joint efficiency (0.7)
- C = Corrosion allowance (1.5mm)

Thickness of tube plate

$$t_p = FG \sqrt{\frac{0.25 p}{f}} + C$$

where tp = Tube plate thickness

$$F = Const. = \sqrt{k/2+3k}$$

 $G = Dia. Of tube plate - Dia of$
down take
 $p = Design pressure(3.5kg/cm^2)$

$$f = Allowable shear stress$$

(1575 kg/cm²)

C = Corrosion allowance

(1.5mm)

$$F = Const. = \sqrt{k/2+3k}$$

where
$$k = \frac{Esxts(D_0 - ts)}{Etxtt(d_0 - ti)N}$$

- Es = Modulus of elasticity of shellEt = Modulus of elasticity of tube $D_0= Outer dia. Of shell$ $d_0= Outer dia. Of tube$ ts= Thickness of shell
- $t_i =$ Thickness of tube
- N = total number of tubes

THICKNESS OF EVAPORATOR BODY

Few Bodies of evaporator is subjected to external pressure due to vacuum during operation. Thickness is calculated by following equation :

$$t = D0 / 100[1.15p/f + 0.053(KfL/Do)^{2/3}]$$

Where t = thickness of condenser in mm
 Do = outer diameter of condenser in mm
 L = effective length of condenser in mm
 p = design pressure (0. 13 kgf/cm²)
 K = Elastic modulus (19.5 x10³ kgf/mm²)
 f = allowable stress (9.5 kgf/mm²)

CATCH ALL DESIGN

FUNCTION

 To arrest juice particles going along with vapours of various bodies of multiple effect evaporator.

DESIGN PARAMETERS

- Velocity of vapour at various sections of catch all
- Direction of flow of vapours at various section

CATCH ALL DESIGN

Ε

CATCHALL DESIGN

VAPOUR VELOCITIES (M/Sec.)

VESSEL	SEC A	SEC B	SEC C	SEC D	SEC E
1 ST VESSEL	12	18	12	25	30
2 ND VESSEL	18	25	18	30	35
3 RD VESSEL	25	30	25	35	40
4 TH VESSEL	30	35	30	35	45
5 TH VESSEL	35	40	35	45	50

CALCULATIONS

- VAPOUR LOAD = HS X ER X Sp. Volume (m^3 /sec.) 3600
- a. Calculation of d1
- π/4 d1² x VA = VAPOUR LOAD where VA = vapour velocity at sec. A
- b. Calculation for h1
- harphi d1/4 = h1

c. Calculation for d2

 π (d2² - d1²)/4 x VB =Vapour Load where VB = vapour vellocity at sec. B
 d. Calculation for h2

 π d2 x h2 x Vc = VAPOUR LOAD

π (d3² - d2²)/4 x VD = VAPOUR LOAD π/4 d4² x VE = VAPOUR LOAD

Condensate extraction

- Centrifugal pump on each effect
- Siphon with equalization leg

Size of condensate outlet (D)
 wt of steam admitted = wt of codensate(kg/sec)
 Neglecting NCG
 Volume of condensate = wt of condensate

(m³/sec)

1000

 $\pi/4D^2 \times v = Volume of condensate (m^3/sec)$ Take V = 0.6 m/sec.

Calculate D from above equation

Steam saving devices

- Vapour line juice heater
- Direct Contact Heater
- Cigar
- Condensate heater

THANKS
PAN DESIGN

By J.P.SRIVASTAVA Ex Chief Design Engineer National Sugar Institute, Kanpur, India

National Sugar Institute,Kanpur, India

PAN DESIGN

FUNCTION

Final stage of boiling of sugar solution is done under vacuum to develop sugar crystals with desired purity drop with minimum energy energy consumption TYPES

- 1. Batch pan
- 2. Continuous pan

VACUUM PAN

DESIGN CONSIDERATIONS

- Hydrostatic head should be as low as possible
- Circulation of massecuite should be as rapid as possible in order to give rapid working and good exhaustion
- The graining volume should be as small as possible in order to permit the maximum exhaustion with the minimum volume of massecuite
- Higher S/V ratio for high grade massecuite and lower S/V for low grade massecuite

DESIGN PARAMETERS

- Heating surface
- Total number of tubes
- Diameter of down take
- Diameter of tube plate
- Hydrostatic head
- Height of vapour space
- Catch all design (centrifugal type)
- Thickness of calendria shell
- Thickness of tube plate

Given parameters

- Capacity of pan in tonnes
- Size of tube 101.6 mm OD, 16 gauge thick
- Total length of tube- 900-1000 mm
- Graining volume- 37% of working volume
- Circulation ratio (CR) 2.5
- Angle of bottom saucer 17 to 22°

Material of construction & code of practice

- Low carbon steel (mild steel) as per BIS code IS: 226 and IS: 2062 for fabrication of calendria, pan body, bottom saucer, vapour pipe etc.
- Solid drawn brass tube with Cu & Zn of 70 : 30 ratio as per IS 407 OR stainless steel as per IS 304 grade steel for pan tubes

CALCULATIONS

- Cap of pan(m³) = 0.7 x cap of pan in tonnes
 Heating Surface(S) = Cap. Of pan in m³ x 6.6 m⁻¹ since S/V = 6.6 m⁻¹
- Total number of tubes(N) =

HS of pan (m²) HS of one tube (m²)

- Dia. Of down take
- C R = 2.5 = Internal CS area of all tubes /Internal CS of downtake

$$= \pi x di^2 x N/4$$

 $\pi \times Dd^2/4$ Calculate Dd from above equation

> National Sugar Institute,Kanpur, India

Diameter of tube plate(Dtp)

<u>Setting of tubes:</u> Two types of setting 1. Triangular setting 2. Square setting 60° 60° 60° 70° 70°

TRIANGULAR SETTING

SQUARE SETTING

• Diameter of tube plate (Dtp) $\pi \times Dtp^2/4 = (0.866p^2 \times N) + \pi/4 \times Dd^2$ 0.85Where P = pitch of the tube = od of tube + ligament i.e. 102+16 mm = 118 mm

Calculate Dtp from above equation

TUBE PLATE

GRAINING VOLUME

- It is the volume of high purity syrup or melt fed to the pan before turning on the steam valve which should be as low as possible.
- Normally, It is the volume of pan up to top of the top tube plate i.e.
- Volume of all tubes (V1) + Volume of downtake (V2) + Volume of bottom saucer(V3)

Volume of all tubes (V1) = $\pi/4di^2 \times L \times N$ Volume of downtake (V2) = $\pi/4Dd^2 \times L$ Volume of bottom saucer (V3) $= 1/3 h (A1 + A2 + \sqrt{A1A2})$ where h = height of bottom saucer= tan α (D_{tp} - D_{dis})/2 A1 = CS area corresponding to D_{tp} A2 = Cs area corresponding to Ddis

Dia. Of Discharge valve (Ddis) $= \sqrt{4x U}$ πvt where $U = volume of massecuite(m^3)$ v = velocity of m/s dischargei.e. 1 meter/ min. t = time taken for discharge i.e. 10 - 15 min.

Hydrostatic Head

National Sugar Institute,Kanpur, India

Hydrostatic Head

where A1 corresp. to Dtp & A2 corresp. to Dc $V3 = \pi/4 Dc^2 x h3$ Calculate h3 from equation 2 Now calculate HSL from equation 1

Height of Vapour space

- Height of vapour space above HSL is approximately kept 1.5 meter which is the height of cylindrical portion of pan body.
- It is one of the important parameter to control entrainment.
- Lower value of vapour space or exceeding the level of massecuite beyond HSL may result into entrainment.

Size of steam inlet in calendria $\pi/4D^2 \times v = HS \times ER_{max} \times Sp. Volume m^3/s$ 3600

 $\begin{array}{rcl} {\sf ER}_{\sf max} = & {\sf A} \ {\sf m/c} & 60 kg/m^2/hr \\ & {\sf B} \ {\sf m/c} & 50 kg/m^2/hr \\ & {\sf C} \ {\sf m/c} & 40 kg/m^2/hr \\ & {\sf v} = & 30-35m/sec. \\ \hline {\sf Calculate} \ {\sf D} \ {\sf from \ above \ equation} \end{array}$

Size of condensate outlet (D)

```
wt of steam admitted = wt of condensate(kg/sec)

Neglecting NCG

Volume of condensate = wt of condensate

(m^3/sec) 1000
```

```
\pi/4D^2 \times v = Volume of condensate (m^3/sec)
where v = 0.5 to 0.6 m/s
```

Calculate D from above equation

Removal of non condensable gases

- Continuous removal of NCGs from calendria is essential to ensure proper and continuous entry of steam in calendria
- Vent connections are suitably provided at proper location keeping in view steam entry arrangement
- Icm² cross sectional area to be provided for each 10 m² heating surface of pan

Thickness of calendria shell

 t = P Di/(2fJ - P) + c
 Where t = thickness of calendria shell
 P = Internal press.or test press
 (3.5 kg/cm²)
 Di = Inside dia. of shell
 f = allowable stress (950kg/cm²)
 J = weld joint efficiency (0.7)
 c = Corrosion allowance (1.5mm)

Thickness of tube plate $\mathbf{t}_p = \mathbf{F}_q \sqrt{\frac{0.25}{c}}$ + C where tp = Tube plate thickness $F = Const. = \sqrt{k/2+3k}$ G = Dia. Of tube plate – Dia of down take $p = Design pressure(3.5kg/cm^2)$ f = Allowable shear stress (1575 kg/cm^2) C = Corrosion allowance (1.5mm)

$$\begin{split} F &= \text{Const.} = \sqrt{k/2 + 3k} \\ \text{where } k &= \underbrace{\text{Esxts}(D_0 - ts)}_{\text{Etxtt}(d_0 - ti) N} \\ &= \underbrace{\text{Es} = \text{Modulus of elasticity of shell}}_{\text{Et} = \text{Modulus of elasticity of tube}} \\ &= \underbrace{\text{D}_0 = \text{Outer dia. Of shell}}_{d_0 = \text{Outer dia. Of tube}} \\ &= \underbrace{\text{Thickness of shell}}_{t_i = \text{Thickness of tube}} \\ &= \underbrace{\text{N} = \text{total number of tubes}} \end{split}$$

THICKNESS OF PAN BODY

Body of pan is subjected to external pressure due to vacuum during operation. Thickness is calculated by following equation :

 $t = D0 / 100[1.15p/f + 0.053(KfL/Do)^{2/3}]$

Where t = thickness of pan body in mm D_o = outer diameter of pan in mm L = effective length of pan in mm p = design pressure (0. 13 kgf/cm²) K = Elastic modulus (19.5 x10³ kgf/mm²) f = allowable stress (9.5 kgf/mm²)

Centrifugal catch all design

- Working principle
- 1. Tangential ejection of vapour from vanes of centrifugal impeller caused spiral current with efficient abrasion against outer wall results into better separation of sugar particles from vapour.
- 2. Centrifugal action assists to seperate heavier sugar particles from vapour
- Involute profile of vanes offer less resistance to vapour result into increased velocity at exit of centrifugal impeller.

National Sugar Institute,Kanpur, India

- Calculate vapour load V (m³/s) considering ER corresponding to type of massecuite & HS
- Calculate D1, take velocity of vapour 35m/sec
- πD1 = n(b+s) ------ 1
 Where D1 = dia of vapour inlet in catchall n = no of vanes b = Space between two vanes s = thickness of vane (1.5 mm)
 Calculate 'b' from Eq. 1
 V = n x b x h x y ------ 2

where $V = vapour load (m^3/s)$

- n = no of vanes
- b = space between two vanes
- h = height of vanes
- v2 = vapour velocity in vanes at h2 (50 m/ sec)
- v1 = vapour velocity in vanes at h1
 (35 m/sec)

Calculate 'h1 & h2' from Eq. 2 taking v1 & v2 respectively $D = D1 / \sin \theta$

where D = outer dia of catchall

D1 = dia of vapour inlet in catchall

$$\theta = 25^{\circ}$$

No of vanes (n) = 360 /7.5

CONTINUOUS PAN

CLASSIFICATION

- 1. Multi- compartment horizontal tube configuration, FCB design
- 2. Multi-compartment vertical tube configuration
- It is further classified as :
 - a. Long vertical tube (1200 mm)
 - b. Short vertical tube (900 mm)
 - c. Central downtake with side calendria
 - d. Central calendria with side downtake

CONTINUOUS PAN

Design Parameters

- 1. S/V ratio = Heating Surface/working Volume = 10 m^{-1}
- 2. Circulation Ratio (CR) = 1
- 3. Retention time = 60% 75% of batch process 4 Size of tube
 - a. Horizontal design = 35mm X 38 mm
 - b. Vertical design = 101.6 mm OD
 - c. Thickness

National Sugar Institute,Kanpur, India

16 gauge

- A m/s B m/s C m/s • Retention time (R) 2–2.5 3.5–4 5.5–6 (Hrs)
- Massecuite % cane 25 12 8
- flow rate of massecuite (M^3/hr) = TCH x M/S % Cane x 0.7/100
- Volume of massecuite in pan (V) = R x flowrate of massecuite
- This is varies from 57 to 60 % of total volume of pan
- Therefore, total volume of pan = $V \times 100 / 57 \text{ m}^3$

- Diameter of pan normally to betaken as :
- 3.0, 3.5, 4.0, 4.5 meter
- Length of normally taken as 11 to 12 meter
- Number of compartments 11 to 13
- Layout of tube in horizontal tube

Square setting of tube with 85 mm pitch for tube size of 35 mm ID/ 38 mm OD Layout of tube for vertical tube

Triangular setting of tube with 118 mm pitch

CONTINUOUS PAN

- 5. NCG used (Jigger steam) to agitate massecuite in pan to avoid formation of stagnant pockets
- 6. Pan is designed for 70–80 % of total volume for feeding of molasses/ syrup and rest volume for hardening purposes
- 7. Massecuite height above tube plate
 - = 420 mm for A m/s
 - = 320 mm for B & C m/s
- 8. Vapour space height 1.5 meter
- 9. Complete automation of pan operation
CONTINUOUS PAN

EVAPORATION RATE

- 1 A m/s 30–35 kg/m²/hr
- 2 B m/s 25 kg/m²/hr
- 3 C m/s 15kg/m²
- ASPECT RATIO

1. Ratio between longitudinal path length and circulation path length.

2. The normal value is 1.5 to 1.6 to give uniform size of crystal and better exhaustion

CONTINUOUS PAN

ADVANTAGE

- 1. It is energy efficient operation
- 2. It operates at low calendria pressure to promote steam economy
- 3. Improved circulation and faster evaporation
- 4. Better exhaustion of sugar from mother liquor
- 5. Manpower saving and better working control
- 6. Reduced maintenance cost
- 7. Longer operating cycle(water boiling after 35 to 40 days)

THANKS

National Sugar Institute,Kanpur, India

CONDENSER DESIGN

BY J.P.SRIVASTAVA Chief Design Engineer National Sugar Institute, Kanpur, India

National Sugar Institute,Kanpur, India

CONDENSER DESIGN

Objective:

To create desired vacuum in a closed vessel

Functions:

 To condense vapour by spraying cold water
To remove air /non condensable gases from the system

TYPE OF CONDENSER

• Surface Condenser:

No direct contact of vapour with cold water.

It is used where condensate is recirculated

Jet Condenser :

Direct mixing of vapour with cold water. Condensate mixes with cold water

SURFACE CONDENSER

- It is further classified into:
- 1. WATER COOLED
- Condensation of vapour is done by cold water.
- Vapour comes in contact with tubes from out side surface
- Inside the tubes cold water circulate

2. AIR COOLED

- Condensation of vapour is done by air circulation
- Vapour circulates inside the finned tubes .
- Air circulation is done on outside surface of tubes.
- Big fans are used in each shell to circulate air
- Steam ejectors are used to remove air from system

MULTIJET CONDENSER

water

APPROACH TEMPERATURE

It is the difference in temperature of vapour and tail pipe water (waste water)

= t_v - t₂

 This should be as low as possible and ranging

between 5 to 7 deg. C

WATER REQUIREMENT

$W = \underline{H} - \underline{t2}$ $\underline{t2} - \underline{t1}$

- where H = Enthalpy of vapour
 - t2 = Temp. of waste water
 - t1 = temp. of cold water
 - w = Water in kg/kg of vapour

TYPES OF NOZZLE

- Spray Nozzle variable opening through pneumatically operated plunger responsible for condesation of vapour
- Jet nozzle at the bottom of jet box responsible for extraction of air from system as well as partly condense vapour

JET NOZZLE DESIGN

- Shape of nozzle Convergent
- Slope of nozzle 9 to 10 °

Discharge through single Nozzle:

Cd A \vee 2gh m³/sec.

Cd = Coefficient of discharge

= 0.94 - 0.96

- A = Area of cross section at outlet
- g = Gravitational Acceleration

= 9.8 meter/ sec.²

- h = (P1 P2) x equivalent head
 - = (P1 0.135) x 10.36 meter

MAIN DESIGN PARAMETERS

 Diameter of Vapour pipe inlet (D1) vapour load (m³/sec) = HS x ER x sp vol of vapour/3600

HS - heating surface (m²)

ER - evaporation rate (kg/m²/hr) 45 -50 Kg/hr/m² for pan

$$D1 = \sqrt{4 \times vapour load}$$

 $\pi \ x \ V_{\text{vap}}$

Vvap = 50 m/sec

2. Diameter of condenser (D) CS area of condenser = 0.1 to 0.12 m²/1000 Kgs of vapour/hr

- 3. Height of condenser (straight height)
 - = 0.8D to 0.9D

- 4. Diameter of water inlet (d) $\frac{(H-t2)}{(t2-t1) \times kg \vee ap. /sec} = (\pi/4) d^2 \times V_w$ 1000
 - H = Total heat of vapour (kcal)
 - t2 = Temperature of tail pipe water (^oC)
 - t1 = Temperature of Cold water (^o C)
 - V_w = Velocity of water (3 meter/sec)
 - d = Dia of vapor pipe (m)

5. Diameter of tail pipe (d1)

Q = Wt. of vapour generated /hr W = Wt of water/unit wt of vapour Vww = Velocity of water in tail pipe = 3 meter/sec

6. Length of tail pipe (H)

$$\mathsf{H} = \mathsf{H}\mathsf{0} + \mathsf{h} + \mathsf{s}$$

- H0 = Equivalent baromatric head (m)
 - $h = velocity head (V^2/2g)$
- s = Safaty margin = 0.5 meter

Size of sealing pit Volume = 1.5 x volume of tail pipe

National Sugar Institute,Kanpur, India

THICKNESS OF CONDENSER

- Body of condenser is subjected to external pressure due to vacuum. It is calculated by following equation :
 - $t = D_0 / 100 \left[1.15 p / f + 0.053 (K f L / D_0)^2 \right]$

Where t = thickness of condenser in mm

- D_{\circ} = outer diameter of condenser in mm
- L = effective length of condenser in mm
- p = design pressure (0. 13 kgf/cm²)
- $K = Elastic modulus (19.5 \times 10^3 \text{ kgf/mm}^2)$
- f = allowable stress (9.8 kgf/mm²)

THANKS

National Sugar Institute,Kanpur, India